If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+8t+2.2=0
a = -4.9; b = 8; c = +2.2;
Δ = b2-4ac
Δ = 82-4·(-4.9)·2.2
Δ = 107.12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-\sqrt{107.12}}{2*-4.9}=\frac{-8-\sqrt{107.12}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+\sqrt{107.12}}{2*-4.9}=\frac{-8+\sqrt{107.12}}{-9.8} $
| 3(27/10)+y=12 | | 4x+8=3x=-1 | | 3(6s+2)-12s=3(2s+6)-19 | | 5(x-5)=-2(x+6) | | 3x+2(x-5)=-5 | | x+3/8=x-3/5 | | 7v-9=14 | | 2x-12=x/2+9 | | 300r-60r+10²=380 | | 2x+3=5(x+3)-2 | | t/−3.25=0 | | 3x-5(x-2=8(+5-3 | | -5w+4w+6=-9 | | x2-51/2x-3=0 | | 15x-13=0 | | 2+5(x-1)=3(x+1) | | 3^x=23^7x | | c. 2(L)+3(4L)=990.50 | | 6x-16=5X2,-9 | | 300r-0r+10=380 | | 9(10x+20)=(4x+20)20 | | 2y+(4)=8 | | 4x^2=x-68=0 | | (26/20)=(26/x) | | 3c+83=12+c4 | | 2(2x+3)=6(x-9) | | v+20=45 | | 3t-5t^2-45=0 | | -3/4x+3=-9 | | (3x-1)°=(5x-11)° | | 3(4z-1)-2(z+9=5(z+1) | | 2(5−d)=2-4d |